Optimizing Laparoscopic TME/How Low Can You Go?

John Migaly, M.D.
Associate Professor, Colon and Rectal Surgery
Program Director, General Surgery Residency
Duke University Medical Center, Department of Surgery
Durham, NC
Optimizing Laparoscopic TME

- No financial disclosures
Contiguous Spread of Rectal Cancer
Laparoscopic vs Open TME

- Z6051
 - 486 patients
 - 35 institutions
 - Stage II and III rectal cancers
 - Lap vs Open LAR
 - Composite outcome
 - Circumferential margin
 - Distal margin
 - Intactness of TME
 - Trial failed to prove non-inferiority of Lap

1. Fleshman, JAMA 2015
Laparoscopic vs Open TME

- NCDB
 - 2010-2011
 - 18,765
- Laparoscopic versus open LAR
- No difference
 - Gross margin positivity
 - Microscopic margin positivity
 - Circumferential margin >1 cm
 - Number of LN’s harvested

1. Nussbaum, JGIS 2015
Laparoscopic vs Open TME

- NCDB
 - 14,033 patients
 - No difference in survival at 36 months

TABLE 2. Multivariable Adjusted Outcomes of Minimally Invasive (MI-LAR) vs. Open Low Anterior Resection (OLAR) for Rectal Cancer (Reference: OLAR)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Effect Size</th>
<th>Lower 95% CI</th>
<th>Upper 95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymph node retrieval (number)</td>
<td>0.386</td>
<td>0.074</td>
<td>0.697</td>
<td>0.015</td>
</tr>
<tr>
<td>Any positive margin (OR)</td>
<td>0.901</td>
<td>0.775</td>
<td>1.047</td>
<td>0.174</td>
</tr>
<tr>
<td>Hospital length of stay (days)</td>
<td>-0.866</td>
<td>-0.984</td>
<td>-0.748</td>
<td><0.001</td>
</tr>
<tr>
<td>30-day unplanned Readmission (OR)</td>
<td>1.052</td>
<td>0.917</td>
<td>1.208</td>
<td>0.471</td>
</tr>
<tr>
<td>30-day mortality (OR)</td>
<td>0.817</td>
<td>0.540</td>
<td>1.237</td>
<td>0.340</td>
</tr>
<tr>
<td>Use of any adjuvant therapy (OR)</td>
<td>1.023</td>
<td>0.942</td>
<td>1.111</td>
<td>0.589</td>
</tr>
<tr>
<td>Survival (36 months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of mortality (HR)</td>
<td>0.885</td>
<td>0.769</td>
<td>1.019</td>
<td>0.089</td>
</tr>
</tbody>
</table>

Adjusted variables include age, sex, race, insurance status, Charlson Comorbidity Index, facility type and volume, pathologic T and N stage, and use of neoadjuvant chemotherapy or radiation therapy. CI indicates confidence interval; HR, hazard ratio; OR, odds ratio.

Laparoscopic versus Robotic TME

- Equivalent oncologic outcomes
- Early data suggested lower conversion rate with Robotic TME versus Laparoscopic
- ROLLARR Randomized Clinical Trial
 - 471 patients
 - Endpoint was rate of conversion to open
 - No difference between robotic and laparoscopic

2. Jayne, JAMA 2017
Port Placement

Abdomen

12mm

Umbilicus

Duke Surgery
Laparoscopic TME: Entering the Pelvis
Laparoscopic TME: Identifying the Autonomic Nerves
Laparoscopic TME: Identifying the Autonomic Nerves
Laparoscopic TME: Dissection
Laparoscopic TME: Rectal Transection
Laparoscopic TME

- IMA/IMV Ligation/Entry into pelvis
- Identification of Nerves
- Bloodless dissection
- Accentuate anterior dissection via pexy of uterus and forward traction via assistant
- Distal transection may be most difficult portion of the case
 - Adjunctive measures
 - TaTME